Summary

We created three synthetic “pseudoproxies’ (Sr/Ca, §'%0, §!'B) with various amounts of
environmental information encoded into each, based on their theoretical dependence on SST,
SSS and pHsw (Fig. 2). Because we created this dataset with three coral variables and three
potential climate targets, this is considered a square system (i.e., the number of predictor
variables equals the number of unknown variables), which is important when considering
regularization (see Sections 3.3.2 and 4.2). The means by which we calculated these three
synthetic pseudoproxies are highly idealized, meaning that each pseudoproxy has a near-perfect
relationship with its corresponding climate target(s). However, the uncertainty in each proxy’s
relationship to the climate target is considered in our experimental design, which examines how
uncertainty in SMITE-reconstructed SST and pHsw estimates increases as the degree of Gaussian
and autocorrelated noise increases. The magnitude of Gaussian noise and autocorrelation
considered in our experiment (Table 1) is beyond the typical range observed in most coral-based
paleoclimate studies (Hathorne et al., 2013; Jones et al., 2015; Standish et al., 2019). We expect
therefore that all sources of uncertainty, and their subsequent impacts on SST and pHsw
estimates, are accounted for in this conservative analysis. The minimum uncertainty for each
synthetic pseudoproxy was taken from the literature as analytical uncertainty. For synthetic
Str/Ca values, this was taken to be 0.009 mmol/mol, or approximately 0.1% RSD (Schrag, 1999).
For synthetic §'0 values, we used an analytical uncertainty of 0.1%o (Epstein & Mayeda, 1953).

For synthetic §''B values, analytical uncertainty was taken to be 0.09%o (Stewart et al., 2021).

Fig 1. Monthly time series of three synthetic pseudoproxies (B) calculated from environmental information
spanning the 20™ century off the east coast of Australia (A) (de Boisséson et al., 2018, Lenton et al., 2016). The

gray shaded region in each panel, which is barely visible, indicates the minimum (analytical) uncertainty associated



with each pseudoproxy. All three pseudoproxies exhibit an idealized relationship with their corresponding

environmental variable(s) of interest (Sr/Ca ~ SST; 6'°0 ~ SST + SSS; 6''B ~ SST + SSS + pH).

Table 1. Mean (1), standard deviation (o), range of analytical errors (¢), and correlation coefficients (r) for all

synthetic proxies to each environmental variable.

Synthetic Proxy p c Emin - Emax r - SST r - SSS r - pHsw
(RSDhmin - max )

Sr/Ca (mmol/mol) 8.98 0.12 0.009-0.180 —-1.00 0.68 0.54
(0.1-1.9%)

3120 —5.49 0.51 0.10-0.21 —0.98 0.80 0.50

(%o) (1.8-3.7%)

3B 22.90 0.66 0.18-0.62 —0.92 0.63 0.82

(%o) (0.78-2.68%)

Monthly SST and pHsw data from the Great Barrier Reef (18.5°S, 149.5°E) between 1900
and 2000 were acquired from Lenton et al. (2016), a 20" century reconstruction of SST, SSS and
pH across the Great Barrier Reef (n = 1212). SSTs ranged from 21.83°C to 29.69°C (n = 25.92°C
+ 1.91, 1o), with a minor but significant warming trend of 0.08°C per decade (p < 0.0001).
Seawater pH ranged from 8.09 to 8.21 (u=8.16 £ 0.03) and exhibits two significant negative
trends pre-1950 (0.004 units per decade) and post-1950 (0.014 units per decade). Although SSS
data are also available from this dataset for the same time interval, these data simply repeat the
same annual cycle of SSS throughout the 20" century with no interannual or decadal variability.
To better reproduce long-term changes in SSS, we used SSS data from the ORA20C dataset (de
Boisséson et al., 2018) from the same location and time interval. This dataset extends back

through the 20" century and is an advanced data assimilation product that tunes the output of the



European Center for Medium-range Weather Forecasts twentieth century reanalysis, ERA-20C,
to in situ observations. SSS variations from this location in the ORA20C dataset exhibit a highly
skewed left distribution (i = 33.69 £ 0.43 psu), with values ranging from 31.61 to 34.17 due to

episodic freshwater runoff events.

According to hindcast archived data from the CSIRO Environmental Modelling Suite
implemented by the Australian Institute of Marine Science

(https://research.csiro.au/cem/software/ems/), SSS in this region between 2010 and 2022 ranged

from 34.7 to 35.6 psu and exhibit a slightly skewed left distribution (un = 35.23 + 0.16 psu). We
acknowledge that the distributions of ORA20C and CSIRO SSS are statistically distinct from
one another, both in terms of mean and variance (p < 0.001). However, the purpose of including
SSS in the synthetic experiment is to create interference in both synthetic §'%0 and §!'B values
for reconstructing SST and pHsw, respectively. Thus, there are two important aspects of SSS that
we wish to reproduce for the purposes of this experiment: long-term variability (interannual to
decadal), and the covariance between SSS and SST. The ORA20C SSS dataset for this region
exhibits substantial interannual and decadal-scale variability, while the Lenton et al. (2016) SSS
dataset exhibits none. With respect to covariance, the CSIRO dataset shows that SST and SSS
are moderately anti-correlated in this region (r = —0.58). SST and SSS data from Lenton et al.
(2016) exhibit a slightly weaker anticorrelation (r = —0.53), while SST data from Lenton et al.
(2016) and ORA20C SSS exhibit a slightly stronger anticorrelation (r = —0.68). Since ORA20C
SSS exhibits both long-term variability and similar covariance to SST as the observed CSIRO

data, we chose to use the ORA20C SSS dataset for our synthetic experiment.

Synthetic Sr/Ca ratios were calculated as a function of SST using the mean slopes and

intercepts for the Sr/Ca ~ SST relationship from Corrége (2006).


https://research.csiro.au/cem/software/ems/

Sr
Ca = —0.0607(0.0090)T + 10.553(0.292) (8)
(o

Where T is temperature in degrees Celsius. Synthetic Sr/Ca (S¥/Ca.) ratios ranged from 8.75 to

9.23 mmol/mol (p = 8.98 mmol/mol + 0.12).

Synthetic §'30 values were calculated as a function of both SST and SSS using equation

1 from Thompson et al. (2011).
5180, = —0.22SST + 0.27SSS 9

The regression slopes for SST and SSS were chosen using the same criteria from Thompson et
al. (2011). The SST slope is the organic slope of the §'0 and SST relationship, while the SSS
slope is based on basin-scale seawater §'*0 and SSS regression estimates (LeGrande & Schmidt,

2006). Synthetic 830 values ranged from —6.74 to —4.52%o (U = —5.49 £ 0.51%o).

Synthetic §''B values were calculated as a function of SST, SSS and pHcr. They were
determined by rearranging the pH-dependent equation from Zeebe and Wolf-Gladrow (2001) to

solve for the boron isotope ratio of carbonate (6/B.).

(10)

5B, — 6B,
pH = pK, —log <61ch — 6MB,, + 1000(a — 1))
Where the boron isotope ratio of seawater (6/By,) is 39.61%o (Foster et al., 2010), and the mass
fraction factor between boric acid and borate ion () is 1.0272 (Klochko et al., 2006). The
negative log of the dissociation constant between boric acid and borate ion (pKb) is a function of
both temperature and salinity (Dickson, 1990). We therefore calculated pKb at each time interval

by taking the negative log of the Kb equation from Dickson (1990). The values of pKb ranged



between 8.56 and 8.64 given a temperature range between 21.83 and 29.69°C and a salinity

range between 31.61 and 34.17 psu.

These calculations yield synthetic !'B values between 18.30 and 19.64%o, which is
expected given the pH of seawater. However, corals upregulate their internal pH relative to
seawater (McCulloch et al., 2017) while also often exhibiting increased seasonal variance (Ross
et al., 2017). Thus, to yield synthetic 5''B values consistent with those observed in coral

aragonite, we calculated pHer from pHsw using equation 13 from D’Olivo et al. (2019).
pH. = 0.49pHy,, + 4.93 — 0.02T (11)

Note that the temperature sensitivity of synthetic 3''B values is realized in its dependence on
both pKb as well as pHcras specified in equation 11. Meanwhile, the salinity sensitivity of
synthetic 8'!B values is only realized in its dependence on pKb. Synthetic 5!'B values ranged

from 22.21 - 24.10%o0 (1 =23.17%0 £ 0.41).

Error Assessments

We use three metrics to quantitatively compare SMITE SST and pHsw estimates with those
derived from Sr/Ca ratios and 5!'B values, respectively: the correlation coefficient (r), the root-
mean squared error (RMSE), and the standard error of prediction (SEP). Each metric provides a
measure of the correlation, accuracy, and precision of the reconstruction, respectively. The SEP
is defined as the uncertainty in derived SST estimates based on the uncertainty in both the
climate target (SST, pHsw) as well as the uncertainty in the corresponding coral variable(s).
Given that our SST measurements are derived from, or modeled after, temperatures derived from
in situ loggers, uncertainty for temperature was fixed at 0.02°C

(https://www.onsetcomp.com/products/data-loggers/u22-001). Uncertainty for our pHsw



measurements were fixed at 0.02 units. Uncertainty for SSS measurements (used in calculating
pKb for §''B-derived pHsw estimates) were based on BATS CTD measurements and also fixed at

0.02 psu.

The SEP for each climate target reconstruction is calculated using a bootstrap Monte Carlo
approach. At each iteration (i = 1,...,10000), each individual measurement in both the coral
variable and climate target fields are randomly resampled from a normal distribution with a mean
equal to the given variable/climate target value (ui) and a standard deviation equal to the
specified error (si). Model parameters are then estimated from the perturbed coral variable and
climate target fields, and SST/pHsw estimates for each data point are stored. The 95% confidence
interval for each predicted value is determined from the distribution of predicted values derived
from each Monte Carlo iteration. The SEP is then determined as the average distance from the
mean to the upper and lower bounds of the 95% confidence interval, divided by 1.96 (73). The
95% confidence interval for the SEP itself is then defined as the standard deviation of the SEP

throughout each calibration dataset, multiplied by 1.96.
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Figure 2. The precision (SEP; opaque envelope) and accuracy (RMSE; translucent envelope) of



SMITE SST estimates (black) versus Sr/Ca-derived SST (left; orange) and 6! B-derived pH
(right; green) over increasingly autocorrelated errors (fixed at analytical uncertainty).

Figure 3. SMITE model parameters, or loadings, for SST (left) and pH (right) over increasingly
autocorrelated errors (fixed at analytical uncertainty). Shaded regions represent the Monte
Carlo estimated 95% confidence interval for each parameter (i = 10,000).
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Figure 4. SMITE model parameters, or loadings, for SST (left) and pH (right) over different
calibration period lengths. Shaded regions represent the Monte Carlo estimated 95% confidence
interval for each parameter (i = 10,000).
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