
Summary 

We created three synthetic ‘pseudoproxies’ (Sr/Ca, δ18O, δ11B) with various amounts of 

environmental information encoded into each, based on their theoretical dependence on SST, 

SSS and pHsw (Fig. 2). Because we created this dataset with three coral variables and three 

potential climate targets, this is considered a square system (i.e., the number of predictor 

variables equals the number of unknown variables), which is important when considering 

regularization (see Sections 3.3.2 and 4.2). The means by which we calculated these three 

synthetic pseudoproxies are highly idealized, meaning that each pseudoproxy has a near-perfect 

relationship with its corresponding climate target(s). However, the uncertainty in each proxy’s 

relationship to the climate target is considered in our experimental design, which examines how 

uncertainty in SMITE-reconstructed SST and pHsw estimates increases as the degree of Gaussian 

and autocorrelated noise increases. The magnitude of Gaussian noise and autocorrelation 

considered in our experiment (Table 1) is beyond the typical range observed in most coral-based 

paleoclimate studies (Hathorne et al., 2013; Jones et al., 2015; Standish et al., 2019). We expect 

therefore that all sources of uncertainty, and their subsequent impacts on SST and pHsw 

estimates, are accounted for in this conservative analysis. The minimum uncertainty for each 

synthetic pseudoproxy was taken from the literature as analytical uncertainty. For synthetic 

Sr/Ca values, this was taken to be 0.009 mmol/mol, or approximately 0.1% RSD (Schrag, 1999). 

For synthetic δ18O values, we used an analytical uncertainty of 0.1‰ (Epstein & Mayeda, 1953). 

For synthetic δ11B values, analytical uncertainty was taken to be 0.09‰ (Stewart et al., 2021).  

Fig 1. Monthly time series of three synthetic pseudoproxies (B) calculated from environmental information 

spanning the 20th century off the east coast of Australia (A) (de Boisséson et al., 2018; Lenton et al., 2016). The 

gray shaded region in each panel, which is barely visible, indicates the minimum (analytical) uncertainty associated 



with each pseudoproxy. All three pseudoproxies exhibit an idealized relationship with their corresponding 

environmental variable(s) of interest (Sr/Ca ~ SST; δ18O ~ SST + SSS; δ11B ~ SST + SSS + pH). 

Table 1. Mean (μ), standard deviation (σ), range of analytical errors (ε), and correlation coefficients (r) for all 

synthetic proxies to each environmental variable. 

Synthetic Proxy  μ σ εmin - εmax 

(RSDmin - max ) 

r - SST r - SSS r - pHsw 

Sr/Ca (mmol/mol) 8.98 0.12 0.009–0.180 

(0.1–1.9%) 

−1.00 0.68 0.54 

δ18O  

(‰) 

−5.49 0.51 0.10–0.21 

(1.8–3.7%) 

−0.98 0.80 0.50 

δ11B  

(‰) 

22.90 0.66 0.18–0.62 

(0.78–2.68%) 

−0.92 0.63 0.82 

 

Monthly SST and pHsw data from the Great Barrier Reef (18.5oS, 149.5oE) between 1900 

and 2000 were acquired from Lenton et al. (2016), a 20th century reconstruction of SST, SSS and 

pH across the Great Barrier Reef (n = 1212). SSTs ranged from 21.83oC to 29.69oC (μ = 25.92oC 

± 1.91, 1σ), with a minor but significant warming trend of 0.08oC per decade (p < 0.0001). 

Seawater pH ranged from 8.09 to 8.21 (μ = 8.16 ± 0.03) and exhibits two significant negative 

trends pre-1950 (0.004 units per decade) and post-1950 (0.014 units per decade). Although SSS 

data are also available from this dataset for the same time interval, these data simply repeat the 

same annual cycle of SSS throughout the 20th century with no interannual or decadal variability. 

To better reproduce long-term changes in SSS, we used SSS data from the ORA20C dataset (de 

Boisséson et al., 2018) from the same location and time interval. This dataset extends back 

through the 20th century and is an advanced data assimilation product that tunes the output of the 



European Center for Medium-range Weather Forecasts twentieth century reanalysis, ERA-20C, 

to in situ observations. SSS variations from this location in the ORA20C dataset exhibit a highly 

skewed left distribution (μ = 33.69 ± 0.43 psu), with values ranging from 31.61 to 34.17 due to 

episodic freshwater runoff events.  

According to hindcast archived data from the CSIRO Environmental Modelling Suite 

implemented by the Australian Institute of Marine Science 

(https://research.csiro.au/cem/software/ems/), SSS in this region between 2010 and 2022 ranged 

from 34.7 to 35.6 psu and exhibit a slightly skewed left distribution (μ = 35.23 ± 0.16 psu). We 

acknowledge that the distributions of ORA20C and CSIRO SSS are statistically distinct from 

one another, both in terms of mean and variance (p < 0.001). However, the purpose of including 

SSS in the synthetic experiment is to create interference in both synthetic δ18O and δ11B values 

for reconstructing SST and pHsw, respectively. Thus, there are two important aspects of SSS that 

we wish to reproduce for the purposes of this experiment: long-term variability (interannual to 

decadal), and the covariance between SSS and SST. The ORA20C SSS dataset for this region 

exhibits substantial interannual and decadal-scale variability, while the Lenton et al. (2016) SSS 

dataset exhibits none. With respect to covariance, the CSIRO dataset shows that SST and SSS 

are moderately anti-correlated in this region (r = −0.58). SST and SSS data from Lenton et al. 

(2016) exhibit a slightly weaker anticorrelation (r = −0.53), while SST data from Lenton et al. 

(2016) and ORA20C SSS exhibit a slightly stronger anticorrelation (r = −0.68). Since ORA20C 

SSS exhibits both long-term variability and similar covariance to SST as the observed CSIRO 

data, we chose to use the ORA20C SSS dataset for our synthetic experiment. 

Synthetic Sr/Ca ratios were calculated as a function of SST using the mean slopes and 

intercepts for the Sr/Ca ~ SST relationship from Corrége (2006). 

https://research.csiro.au/cem/software/ems/


𝑆𝑆𝑆𝑆
𝐶𝐶𝐶𝐶𝑐𝑐

=  −0.0607(0.0090)𝑇𝑇 + 10.553(0.292) (8) 

Where T is temperature in degrees Celsius. Synthetic Sr/Ca (Sr/Cac) ratios ranged from 8.75 to 

9.23 mmol/mol (μ = 8.98 mmol/mol ± 0.12).  

Synthetic δ18O values were calculated as a function of both SST and SSS using equation 

1 from Thompson et al. (2011).  

𝛿𝛿18𝑂𝑂𝑐𝑐 = −0.22𝑆𝑆𝑆𝑆𝑆𝑆 + 0.27𝑆𝑆𝑆𝑆𝑆𝑆 (9) 

The regression slopes for SST and SSS were chosen using the same criteria from Thompson et 

al. (2011). The SST slope is the organic slope of the δ18O and SST relationship, while the SSS 

slope is based on basin-scale seawater δ18O and SSS regression estimates (LeGrande & Schmidt, 

2006). Synthetic δ18O values ranged from −6.74 to −4.52‰ (μ = −5.49 ± 0.51‰). 

Synthetic δ11B values were calculated as a function of SST, SSS and pHcf. They were 

determined by rearranging the pH-dependent equation from Zeebe and Wolf-Gladrow (2001) to 

solve for the boron isotope ratio of carbonate (δ11Bc). 

𝑝𝑝𝑝𝑝 =  𝑝𝑝𝑝𝑝𝑏𝑏 − log�
𝛿𝛿11𝐵𝐵𝑠𝑠𝑠𝑠 −  𝛿𝛿11𝐵𝐵𝑐𝑐 

𝛿𝛿11𝐵𝐵𝑐𝑐 −  𝛿𝛿11𝐵𝐵𝑠𝑠𝑠𝑠 + 1000(𝛼𝛼 − 1)�
(10) 

Where the boron isotope ratio of seawater (δ11Bsw) is 39.61‰ (Foster et al., 2010), and the mass 

fraction factor between boric acid and borate ion (α) is 1.0272 (Klochko et al., 2006). The 

negative log of the dissociation constant between boric acid and borate ion (pKb) is a function of 

both temperature and salinity (Dickson, 1990). We therefore calculated pKb at each time interval 

by taking the negative log of the Kb equation from Dickson (1990). The values of pKb ranged 



between 8.56 and 8.64 given a temperature range between 21.83 and 29.69oC and a salinity 

range between 31.61 and 34.17 psu. 

These calculations yield synthetic δ11B values between 18.30 and 19.64‰, which is 

expected given the pH of seawater. However, corals upregulate their internal pH relative to 

seawater (McCulloch et al., 2017) while also often exhibiting increased seasonal variance (Ross 

et al., 2017). Thus, to yield synthetic δ11B values consistent with those observed in coral 

aragonite, we calculated pHcf from pHsw using equation 13 from D’Olivo et al. (2019).  

𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐 =  0.49𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 + 4.93 − 0.02𝑇𝑇 (11) 

Note that the temperature sensitivity of synthetic δ11B values is realized in its dependence on 

both pKb as well as pHcf as specified in equation 11. Meanwhile, the salinity sensitivity of 

synthetic δ11B values is only realized in its dependence on pKb. Synthetic δ11B values ranged 

from 22.21 - 24.10‰ (μ = 23.17‰ ± 0.41). 

Error Assessments 

We use three metrics to quantitatively compare SMITE SST and pHsw estimates with those 

derived from Sr/Ca ratios and δ11B values, respectively: the correlation coefficient (r), the root-

mean squared error (RMSE), and the standard error of prediction (SEP). Each metric provides a 

measure of the correlation, accuracy, and precision of the reconstruction, respectively. The SEP 

is defined as the uncertainty in derived SST estimates based on the uncertainty in both the 

climate target (SST, pHsw) as well as the uncertainty in the corresponding coral variable(s). 

Given that our SST measurements are derived from, or modeled after, temperatures derived from 

in situ loggers, uncertainty for temperature was fixed at 0.02oC 

(https://www.onsetcomp.com/products/data-loggers/u22-001). Uncertainty for our pHsw 



measurements were fixed at 0.02 units. Uncertainty for SSS measurements (used in calculating 

pKb for δ11B-derived pHsw estimates) were based on BATS CTD measurements and also fixed at 

0.02 psu.   

The SEP for each climate target reconstruction is calculated using a bootstrap Monte Carlo 

approach. At each iteration (i = 1,…,10000), each individual measurement in both the coral 

variable and climate target fields are randomly resampled from a normal distribution with a mean 

equal to the given variable/climate target value (μi) and a standard deviation equal to the 

specified error (si). Model parameters are then estimated from the perturbed coral variable and 

climate target fields, and SST/pHsw estimates for each data point are stored. The 95% confidence 

interval for each predicted value is determined from the distribution of predicted values derived 

from each Monte Carlo iteration. The SEP is then determined as the average distance from the 

mean to the upper and lower bounds of the 95% confidence interval, divided by 1.96 (73). The 

95% confidence interval for the SEP itself is then defined as the standard deviation of the SEP 

throughout each calibration dataset, multiplied by 1.96. 

Autocorrelated (Red) Noise

Figure 2. The precision (SEP; opaque envelope) and accuracy (RMSE; translucent envelope) of 



SMITE SST estimates (black) versus Sr/Ca-derived SST (left; orange) and δ11B-derived pH 
(right; green) over increasingly autocorrelated errors (fixed at analytical uncertainty). 

Figure 3. SMITE model parameters, or loadings, for SST (left) and pH (right) over increasingly 
autocorrelated errors (fixed at analytical uncertainty). Shaded regions represent the Monte 
Carlo estimated 95% confidence interval for each parameter (i = 10,000).  

Calibration Period Length 

Figure 4. SMITE model parameters, or loadings, for SST (left) and pH (right) over different 
calibration period lengths. Shaded regions represent the Monte Carlo estimated 95% confidence 
interval for each parameter (i = 10,000).  
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